Model for m & Stress and Strain Rate of Superplastic Deformation in Ti$_3$Al Alloys

Xu Run1,2

1Gyeongsang University, Department of Metal Materials Engineering, Jinzhou 52828, Korea

2Yantai University, Wenjing College, Department of Electric Mechanical Engineering, Yantai 264005, China

Abstract: The superplastic behavior is built to analyze the phenomenon of Ti$_3$Al. Through parameter change of stress, elongation & K_m and flow stress is acquired. Through comparing with their value size it is found that stress and K will play an important role to m and flow stress respectively. Furthermore they are relationship in proportion to strain rate.

Keywords: model; superplastic deformation; m & flow stress; strain & K; Ti$_3$Al

1. Introduction

The relationship between strain rate sensitive exponent m & flow stress and strain rate in Ti$_3$Al has not been systematically studied so far, so this paper calculates and compares the relationship among them to explore the mechanism of super plasticity. [1, 2] The m increases will cause even super plasticity. The turn of effective plasticity is $m>K>n$. furthermore strain rate and m & stress will Express this important parameter how it has relationship with super plasticity important parameter m and flow stress. Only if the parameter of strain rate is clarified can we determine other parameters for instance strain rate exponent m and flow stress value to find whether this super plasticity can form or not. We know that low flow stress will result in high plasticity. On the other hand high m will result in super plasticity if $m > 0.5$ [3]

![Graph 1](image1.png)

(a) m/σ

![Graph 2](image2.png)

(b) m/K
2 Model research

Now the numerical model is built as below turns. For the tensile test course

In terms of equation \(\sigma = K \varepsilon^n \) -- (1)

Take the logarithm it has \(\ln \sigma = \ln K + n \ln \varepsilon \) -- (2)

In terms of equation too \(\sigma = K_1 \varepsilon^m \) -- (3)

Here K is strength coefficient; n is strain hardening exponent; m is strain rate sensitive coefficient.

The same as above (2) it has

\[\ln \sigma = \ln K + m \ln \varepsilon \] -- (4)

from (1) & (2) it gains below two equations

\[n = \frac{\ln(\sigma_i / \sigma_2)}{\ln(\varepsilon_i / \varepsilon_2)} \] -- (5)

\[K = \exp(\ln \sigma_2 - \frac{\ln(\sigma_i / \sigma_2) \ln \varepsilon_2}{\ln(\varepsilon_i / \varepsilon_2)}) \] -- (6)

from (3) & (4) we gain below two equations too

\[m = \frac{\ln(\sigma_i / \sigma_2)}{\ln(\varepsilon_i / \varepsilon_2)} \] -- (7)

\[K_1 = \exp(\ln \sigma_2 - \frac{\ln(\sigma_i / \sigma_2) \ln \varepsilon_2}{\ln(\varepsilon_i / \varepsilon_2)}) \] -- (8)

These (5-8) equations are the parameters resolution in tensile test.

2. Discussion & conclusions

As shown in Figure 1 (a, b) it shows that with the increasing strain rate \(\varepsilon \) the m increases. Meantime with the increasing stress \(\sigma \) and K m also increases as well. Through observation it has been found that K can play leading role to flow stress. Figure 1 (c, d) it shows that with the increasing strain rate \(\varepsilon \) the stress also increases while with the increasing elongation \(\varepsilon \) and K m increases too, which is another observation in this paper.

3. Conclusions

1. M value increases with the increase of K and stress. The stress plays a role to m in flow stress.

2. With the increase of elongation and K increases, stress decreases, indicating that K plays a role in increasing plasticity.

References

2. Run Xu , Model for Superplastic Deformation of Ti3Al Alloys [J]. International Journal of Plant Engineering
Xu Run / Model for m & Stress and Strain Rate of Superplastic Deformation in Ti3Al Alloys

and Management, 2019, 24 (4):251~254,
DOI:10.13434/j.cnki.1007-4546.2019.0406

Foundation

KOSEF (the Korea of Science and Engineering Fund) under the Specified base program 96-0300-11-01-3.